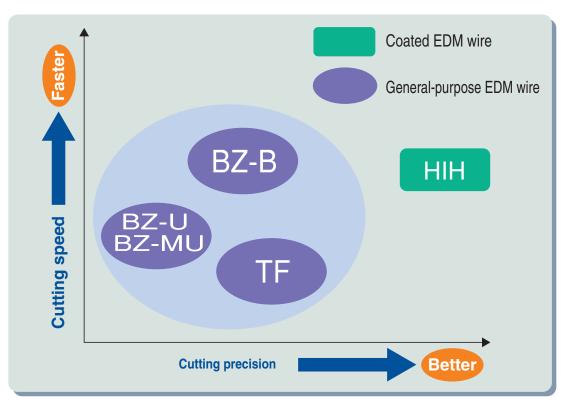


Electrical Discharge Machining Wire <EDM wire>

HITACHI

Electrical Discharge Machining Wire

We satisfy customer demands by implementing integrated production from casting to processing.



.....2

Guideline for selecting products	 Cutting application of each wire type Table: Equipment availability of wire with without paraffin Advantages of non-paraffin wire
	General-purpose of EDM wire BZ-U wire (Standard brass: Equivalent to JIS C 2800)
Introduction of products	•BZ-B wire (Special brass: Zinc content increased) 5 •TF wire (Alloy brass: Special metallic-element added) 5 •BZ-AT wire (Extra-soft brass: For taper cutting) 6 •OFC wire (Oxygen free copper) 6 Plated EDM wire 6
Definition of description of product, others	 HIH wire (Zinc-plated type: For improvement of surface accuracy) Product specifications Bobbin name and dimensions Packaging method Specifying description of product 9 Recycling 9
Technical data	 Setting cutting condition Problems and troubleshooting Optimization of cutting condition

Positioning of each wire type

Positioning of each wire type

Cutting application of each wire type

		Standard	EDM wire		Special E	EDM wire		Coated EDM wire
	Cutting application	HBZ-U	HBZ-MU	HBZ-B	HTF	ABZ-AT	OFC*	НІН
	Standard cutting	0	0	0	0	_	—	0
	Taper cutting	O	0	0	0	*	0	0
	Rough cutting	O	0	0	0	_	_	0
ose	High accuracy shape cutting	O	0	0	0	_	_	*
Cutting purpose	Thick material cutting	O	0	O	0	_	_	0
l d b	High surface accuracy cutting	O	0	0	0	-	-	*
tti	High-speed cutting	O	0	0	0			O
OU.	Automatic threading	*	*	0	0	_	-	0
	Poor jet flow cutting	O	0	0	0	_	-	0
	Copper adhesion less cutting	O	0	0	*	_	_	*
	Brass powder less cutting	0	*	0	0	0	_	0
- L	Aluminium	O	0	0	0	-	-	O
que	Graphite	O	0	O	O	-	*	0
Steel product	Poly crystalline diamond (PCD)	O	O	0	O	—	—	*
	Tungsten carbide	O	O	0	O	—	—	*
Ste	Stainless steel	O	0	0	O	_	-	0
	Low conductivity materials	O	0	0	0	_	*	0
	Agie-Charmilles (formerly Agie)	0	0	0	0	-	-	*
e	Agie-Charmilles (formerly Charmilles)	0	0	O	O	*	-	0
chir	Seibu	Ø	O	0	0	0	0	O
EDM machine	Sodick	0	0	0	0	_	_	0
Σ	Fanuc	*	0	0	0	*	_	*
	Makino	0	0	O	O	-	-	0
	Mitsubishi	0	*	0	0	-	_	O

EDM machine	es	EDM	1 wire	Note
Maker	Model	Paraffin	Non-paraffin	Note
Agie-Charmilles	100D	_	0	
(formerly Agie)	200D	_	0	
	Evolution	_	0	
Agie-Charmilles (formerly Charmilles)	Robofil ®	_	0	Non-paraffin products can be used for
Seibu	EW	_	0	all models, regardless of size.
	MS	_	0	
	MA	_	0	
Sodick	А	0	_	For wire of 0.15 mm ϕ or less,
	AP	0	_	non-paraffin products improve
	AQ	0	_	positioning and accuracy.
Fanuc	α	_	0	Non-paraffin products can be used for
	Tape Cut	0	-	new models, α series or thereafter.
Makino	EE	0	-	For wire of 0.15 mm ϕ or less,
	EQH	0	—	non-paraffin products improve
	EC	0	-	positioning and accuracy.
Mitsubishi	FA	—	0	Non-paraffin products can be used for
	R A	—	0	all models, regardless of size.
	Q A	0	_	
	F X-K	0	-	For wire of 0.15 mm ϕ or less,
	FΧ	0	_	non-paraffin products improve
	CX,SX	0	-	positioning and accuracy.
	DWC®	0		

Table: Equipment availability of wire with without paraffin

Advantages of non-paraffin wire

machined object.

guide dies.

If wire has excessive paraffin or contamination

- · Wire may easily slip on a roller part, etc.
- Extraneous matter may remain on a roller part, etc.

1. If extraneous matter or oil content may remain:

If paraffin wire is used on the EDM machine that is specifically calibrated for non-paraffin wire, the characteristics of electrical discharge machining may be adversely affected since the wire run system will become unstable due to sliding, etc. As cutting line wire marks occur frequently, particularly on the cutting surface, great care is needed for wire selection.

2. If insulation material remains on wire surface:

- Accuracy of tactile sense and positioning may deteriorate.
- Unstable to feeble electrical discharge is generated and feeding dies life is shortened.

BZ-U wire General-purpose EDM wire

Capable of automatic threading For hard material

- Hitachi Metal's standard brass wire
- High cutting speed due to its zinc-rich constitution Improved automatic threading capability due to its characteristic straightness
- Can be used in any company's EDM machine with automatic threading function

General characteristics of BZ-U wire

Turne	Draduct nome	Size	Wire Tolerance	Tensile s	Elongation	
Туре	Product name	((mm)	(MPa)	(kgf/mm ²)	(%)
H (Hard)	BZ-U	0.10~0.33	±0.001	980 over	100 over	0.4 over

Note: 1. Please contact us for the production of special sizes (0.10 mm less, or 0.33 mm over). 2. This wire is manufactured for only H (hard) type.

BZ-MU wire General-purpose **EDM** wire For hard material **Reduction of brass powder Capable of automatic threading** Standard brass For soft material JIS C 2700 Significant reduction of brass equivalent powder Improved automatic threading capability due to its excellent straightness Can be used in all models of EDM machines equipped with automatic threading device in the form of pipe, jet or annealed systems.

General characteristics of BZ-MU wire

Turan			Wire Tolerance	Tensile s	Elongation	
Туре	Product name	((mm)	(MPa)	(kgf/mm²)	(%)
H (Hard)	BZ-MU	0.10- 0.22	+0.001	980 over	100 over	0.4 over
A (Soft)	BZ	0.10~0.33	±0.001	445 over	50 over	15 over

Note: 1. Please contact us for the production of special sizes (0.10 mm less, or 0.33 mm over). 2. In case of A (Soft) type, the product name is ABZ.

Improvement in cutting speed and surface accuracy

General characteristics of BZ-B wire

Turos	Draduat name	Size	Wire Tolerance (mm)	Tensile s	Elongation	
Туре	Product name	((MPa)	(kgf/mm²)	(%)
H (Hard)	BZ-B	0.10~0.33	±0.001	980 over	100 over	0.4 over
A (Soft)	DZ-D	0.10 -0.33	<u>-0.001</u>	445 over	50 over	15 over

Note: 1. Please contact us for the production of special sizes (0.10 mm less, or 0.33 mm over).

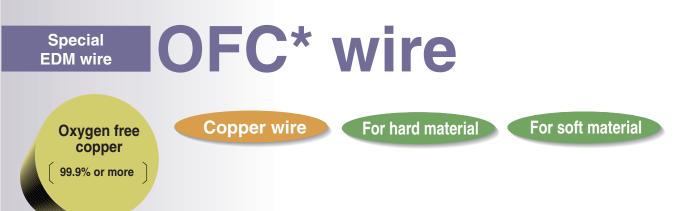
Special EDM wire Alloy brass Special metallice Breaking protection Avoiding of brass adhesion For hard material For soft material

(can be used for material thickness of 100 mm or more)

Significant reduction of brass adhering to cutting surface

General characteristics of TF wire

Tuno	Draduat name	Size	Wire Tolerance _ (mm)	Tensile s	Elongation	
Туре	Product name	((MPa)	(kgf/mm²)	(%)
H (Hard)	TF	0.10~0.33	±0.001	980 over	100 over	0.4 over
A (Soft)	1F	0.10 0.33	<u>-0.001</u>	445 over	50 over	10 over


Note: 1. Please contact us for the production of special sizes (0.10 mm less, or 0.33 mm over).

General characteristics of BZ-AT wire

Туре	Product name	Size (φmm)	Wire Tolerance (mm)	Tensile : (MPa)	strength (kaf/mm²)	Elongation (%)
A (Soft)	BZ-AT	0.20~0.30	±0.001	445 less	45 less	30 over

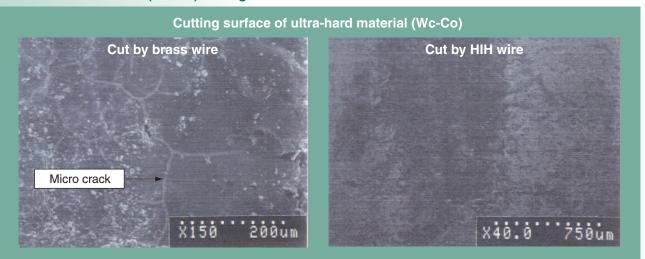
Note: 1. Please contact us for the production of special sizes (0.20 mm less, or 0.30 mm over). 2. This wire is manufactured for only A (Soft) type.

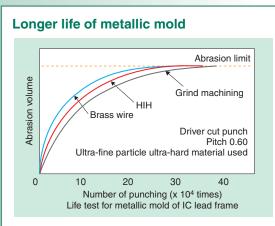
This wire is effective for sintered materials (Graphite, etc) and vacuum cutting, such as with the old model of EDM machine.

General characteristics of OFC wire

Turoo	Type Product name		Wire Tolerance	Tensile s	Elongation	
туре	FIOUUCITIAITIE	((mm)	(MPa)	(kgf/mm ²)	(%)
H (Hard)	4050	0.20~0.30	+0.001	445 over	50 over	0.4 over
A (Soft)	10FC	0.20/~0.30	±0.001	294 less	30 less	15 over

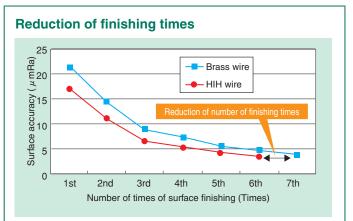
Note: 1. Please contact us for the production of special sizes (0.20 mm less, or 0.30 mm over). *OFC (Oxygen-Free Copper)


Coated EDM wire HIP HIP Wire Reduction of zinc powder Capable of automatic threading For hard material Sinc Coated wire Linc (Zn) For cutting focused on surface and shape accuracy Sinc (Zn) coating by electroplating method Reduction of zinc powder Capable of automatic threading For hard material Provide the cutting surface, increased life of the press mold


General characteristics of HIH wire

Туре	Product name	Size (φmm)	Wire Tolerance (mm)	Tensile strength (MPa) (kgf/mm ²)		Elongation (%)
H (Hard)	ІН	0.10~0.30	±0.001	980 over	100 over	0.4 over

Note: 1. Please contact us for the production of special sizes (0.10 mm less, or 0.30 mm over). 2. This wire is manufactured for only H (Hard) type.


Difference of ultra-hard (Wc-Co) cutting surface

The electrical discharge heat caused by cutting is dispersed by the surface coating of zinc. This reduces the heat-affected layer of the cutting surface, thus prolonging the life of the press metallic mold including IC lead frame.

* Especially in ultra-hard machining with general-purpose EDM wire, the hardness of the machining surface will fall and the press life will be shortened by melting of Co (cobalt), which is the binder.

Conventionally, metallic molds achieved a surface accuracy by performing surface finishing many times. Now, however, it is possible to acquire the same surface accuracy by using HIH wire, while reducing the number of times of surface finishing, thus also reducing the machining time.

 $\% \mbox{This}$ wire is effective for high-accuracy metallic mold cutting, etc. including plastic molds.

Product specifications

Product category	Туре	Product name	Standard size (φmm)	Wire tolerance (\$ mm)	Tensile strength (MPa)	Elongation (%)	Conductivity (%)							
	H (hard)	BZ-U			980 over	0.4 over								
General-purpose EDM wire	H (hard)	BZ-MU			960 Over	0.4 0ver	20 over							
	A (soft)	BZ			445 over	15 over								
	H (hard)	BZ-B	0.10~0.33	0.10~0.33	0.10~0.33	0.10~0.33	0.10~0.33	980 over	0.4 over	20 over				
	A (soft)	BZ-B		±0.001	445 over	15 over	20 0001							
Created	H (hard)	TF											980 over	0.4 over
Special EDM wire	A (soft)	IF			445 over	10 over	17 over							
	A (ultra-soft)	BZ-AT	0.20~0.30		445 over	30 over	20 over							
	H (hard)	1050	0.20~0.30		445 over	0.4 over	90 over							
	A (soft)	10FC	0.20/~0.30		294 over	15 over	90 OVEI							
Coated EDM wire	H (hard)	IH	0.20~0.30	±0.001	980 over	0.4 over	20 over							

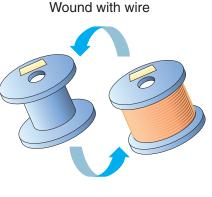
Bobbin name and dimensions

Bobbin name	Flange diameter: D	Barrel diameter: d	Outer width: L	Flange thickness: a	Arbor hole diameter: h	Standard winding volume (kg)	Bobbin dimensions
P-1JT	140	70	39	4.5	12.5	1.5	
P-1FT	140	70	39	4.5	46	1.5	
P-3RT	130	80	110	10	20	3	
P-5RT	160	90	114	12	20	5	
P-10TW	200	110	134	12	25	10	h d D
P-15L	250	125	140	15	34	20	h d D
P-30	280	200	220	20	73	30	
P-50	320	162	217	20	34	50	
K-125	125	80	125	12.5	16	3	← a
K-160	160	100	160	16	22	6	
K-200	200	125	200	20	32	15	

Packaging method

Bobbin name	Standard winding volume (kg)	Boxed number (pcs/box)	Cardboard box size L x W x H (mm)
P-1JT	1.5	10	
P-1FT	1.5	10	370×290×200
P-3RT	3	6	370~290~200
P-5RT	5	4	
P-10TW	10	2	300×210×290
P-15L	20		300~210~290
P-30	30	1	310×250×320
P-50	50		475×325×405
K-125	3	4	270×200×200
K-160	6	2	370×290×200
K-200	15	1	300×210×290

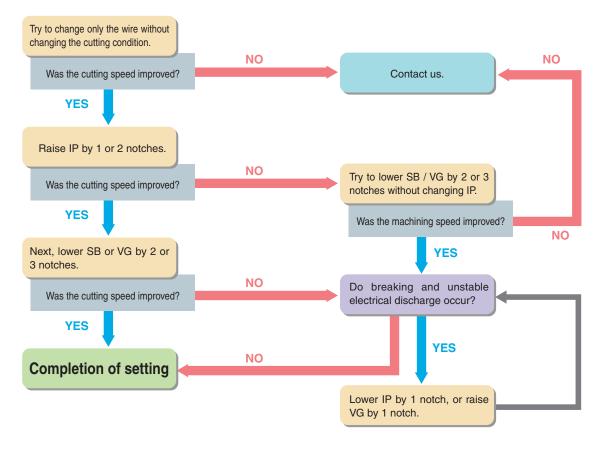
(mm)


Specifying description of product General-purpose EDM wire **Special EDM wire** Bobbin name Wire size (Actual diameter x 100) Paraffin classification: Indication of (N) for non-paraffin wire Product name Туре (Example) In case of non-paraffin wire H BZ-U (N) 2 0 P - 5 R T **Plated EDM wire** Bobbin name Wire size (Actual diameter x 100) Paraffin classification: Indication of (N) for non-paraffin wire Product name (Example) In case of HIH20 wire HIH 2 0 P - 5 R T

Recycling

The post-use empty bobbins are collected free of charge as part of our environmental protection program for industrial waste reduction, and customer service activities. We encourage you to take advantage of this opportunity. •We only collect empty bobbins that come from our company.

•We pick up the empty bobbins, that are placed in the some empty cartons in which they were delivered. The empty bobbins are reused, so we ask that you cooperate with the free collection service by keeping the bobbins clean and undamaged.


Please understand that the contractor collecting the empty bobbins may refuse to take them if they are dirty, damaged, or their storage condition is unacceptable.

Bobbin collection (for reuse)

Setting cutting conditions (Conditions to improve cutting speed)

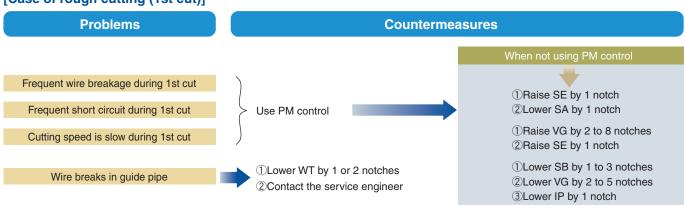
(Example) Tuning an EDM machine manufactured by Mitsubishi Electric

[Parameters for EDM machine manufacturers]

EDM machine makers	Discharge energy setting	Off time setting
Agie-Charmilles (formerly Agie)	P, T	TD
Agie-Charmilles (formerly Charmilles)	A, IAL	B, Aj
Seibu	I	OFF
Sodick	IP, ON	MA, OFF
Fanuc	ON	OFF, SV
Makino	Peak current, ON	OFF
Mitsubishi	IP	SB, OFF

Reference: How much the electrical discharge energy can be raised depends on the material thickness. Good cutting conditions for thick sheet can be obtained by revising the settings as follows.

Material thickness	Setting point
20 mm less	 In general, electrical discharge energy will be weaker for a thinner object. Since a thin board cannot raise the energy significantly, the increase in speed will be relatively low. In case of a material thickness of 10 mm or less, the increase of electrical discharge energy is small.
20~60 mm	 If the state of a high-pressure jet stream is good, the cutting efficiency will be improved. In case of flat plate cutting, the nozzle should be placed as close to it as possible. Since the discharge of machining sludge improves with the thickness, machining with higher electrical discharge energy will be possible.
60 mm over	 In general, the wire becomes exhausted and breaks more easily with a thicker object. If the wire speed is raised somewhat, the increase in cutting speed will be greater than expected. Since the machining of this board thickness may demonstrate a significant difference compared with brass wire machining, please try making significant changes to the conditions.


Note: The setting point is specifically set depending on your processing conditions and other factors, so use this information as a reference for revising the settings to match your conditions. Please contact us if you have any questions.

Problems and troubleshooting

Name of trouble	Trouble state	Cause	Check item/Solution
1. Wire breaking	①Breaking around feeding plate	 Feeding plate is in friction Water of feeding plate nozzle does not touch feeding plate 	Check feeding plate and replace periodically Clean nozzle of feeding plate and check water pressure
	②Breaking around wire guide	·Wire guide is dirty	Maintain periodically
		$\cdot Holding$ force on the wire guide is too strong	Adjust holding force optimally
		Position of wire guide is inaccurate	Reset positioning accuracy
	③Breaking at idling	Poor wire hooking	Check wire hooking position
		·Wires are crossed (tangle/evasion)	Replacing wire, or off-winding
	④Breaking just after starting machining and within length	 Air bubbles in the machining liquid (air breaking) 	Wash for degreasing of material because the cutting condition is too strong
	of 5 mm	Cutting target tilted	Check water pressure of machining liquid Start cutting after plumbing
	^⑤ Breaking after machining of length of over 5 mm	Pressure of cutting liquid is low	Check for position error of cutting liquid nozzle and abrasion
	Ũ	·Cutting condition is not adequate	Check for dirt of suction opening of cutting liquid supply tank
		Presence of foreign matter or a pinhole in material	When cutting a complicated shape, ensure adequate supply of cutting liquid
		·Wire is defective	Replace wires
		Poor wire run	Check for friction, cracks and dirt on polyurethane rubber roller
			Adjust setting error of wire tension
2. Accuracy error of cutting	①Shape defect	Insufficient pressure of wire guide and positioning error	Adjust pressure setting of wire guide and position
3		Insufficient wire tension	Ensure proper setting of wire tension
		·Large ambient temperature change	Remove material distortion (stress)
		·Uneven cutting materials	Plumbing error of wire
		Improper offset	Clean and maintain guide dice, etc.
3. Accuracy error of surface	①Rough surface	 Cutting condition is not adequate (uneven electrical discharge) 	Increase wire sending speed
	Wire mark on cutting surface	Insufficient wire tension	Increase cutting speed
	③Instability of cutting speed	·Cutting speed is slow	Replace resin ion-exchange and stabilize water ratio resistance
		·Degradation of resin ion-exchange	Clean and maintain the wire run system (guide system)
		·Run-failure	Check for dirty, consumption of electrode and the cleaning and maintenance
		Friction, crack or contamination of polyurethane roller	
		Improper wire tension	
4. Cutting speed error	①Cutting speed does not go up	•Cutting condition is not adequate (improper material, board thickness, and size)	Adjust cutting condition by instruction manual Check for position and abrasions of upper and lower nozzles
5. Curl failure	①Wire runs wild in scrap box (forms a permanent wave	·Uneven remnant stress of wire	Try to increase applied current by 1 TAP (higher cutting speed)
	shape)	·Uneven abrasion of conveyor roller / belt	Replace it when uneven abrasion exceeds 1/3 of wire diameter
		Positioning error of conveyor roller / belt	Consult with maintenance contractor of EDM machine
		Improper pressing force of conveyor roller / belt	Run wire with pressing force suitable for wire used
		•Curly shape of wire	Replace with wire having high degree of straightnes

Name of trouble	Trouble state	Cause	Check item/Solution
6. Failure of automatic threading	①Automatic insertion is not performed to guidance and lower hole	·Guidance has dirt and blockage	Maintain periodically
		·Lower hole diameter (work side) is too small	Check minimum lower hole diameter of EDM machine
(insertion failure)		 Pressure and volume of jet water are declining 	Adjust water pressure valve manually
		Positioning error of upper head and lower hole	Check program and perform central positioning
		•Curly shape of wire	Replace with wire having high degree of straightness
7. Failure of automatic	In case of cutter cutting	 Uneven abrasion and insufficient cutting power of cutter 	Replace it if wire mark exists, and check pressing pressure of cutting
threading	①Cannot cut well	·Rolling up at cutting end of wire	Replace it with new cutter
(cutting failure)	②Not inserted into lower hole	·Wire has large carl	Replace with wire having high degree of straightness
	In case of annealed cutting	Inputting error of wire diameter	Change to material and characteristics of wire recommended by EDM makers
	①Cannot cut well	·Improper wire material	Input wire diameter to be used
	②Cutting position varies	Wrong wire type	
8. Winding failure	①Evasion of wire end	·Take wire end away (cause is human factor)	Thoroughly check wire evasion after rewinding
(wire evasion)	②No problem during use, but evasion occurs in middle of bobbin		Customer should thoroughly treat wire end (when setting bobbin to EDM machine)
9. Winding failure (winding loose)	1)Winding is loose, and wire	 Wrong adjustment of winding tension (Unstable dancer) 	Set it to winding tension of every wire diameter
		 Play due to vibration of rewinding machine 	Firmly tighten installation
		Change of bobbin core with rewinding machine	Check bobbin shape and its setting condition on the rewinding machine
10. Winding failure (uneven winding)	①Uneven winding (uneven) occurs in flange part of	 Wrong adjustment of traverser of rewinding machine 	Adjust traverser, and check periodically when rewinding
	bobbin	Deformation of bobbin	Change return control motor
			Bring traverse pulley as close to winding middle diameter as possible
			Check bobbin shape

Optimization of cutting condition (Example) In case of an EDM machine manufactured by Mitsubishi

[Case of rough cutting (1st cut)]

[How to change cutting conditions]

In case of cutting SKD-11, 60 t with ϕ 0.2 wire * This is a reference table. [AE: 21 notches, SE: 1 notch used]

Types of material Standard value		Adjustment value							
Setup condition		SKD-11 (quenching)	NAK/ HPM®	SK-3/ S45C	Stainless steel	Aluminum	Copper	Tungsten carbide copper tungsten	Graphite
Voltage open	Vo (Notch)	12	0	0	0	0	0	0	+4
Power setting	IP (Notch)	9	0	-1	0	0	-1	-1	-2
Off time	OFF(Notch)	1	0	0	0	0	0	0	0
Stabilizer A	SA (Notch)	3	0	0	0	0	0	0	-2
Stabilizer B	SB (Notch)	10	+2	+2	+2	+3	0	0	+4
Wire tension	WT (Notch)	8	0	0	0	0	0	0	-1
Voltage gap	VG (V)	39	0	0	+2	0	+8	+5	+15
Actual cutting speed	FA (%)	100	90	85	85	200	85	50	40

Types of material Standard		Standard value	Adjustment value							
Setup condition	1	SKD-11 (quenching)	Upper or lower nozzle separated	Both nozzle separated	Stepped workpiece	Taper 3 degrees	Taper 5 degrees	Taper 10 degrees	Taper 15 degrees	
Voltage open	Vo (Notch)	12	0	0	0	0	0	0	0	
Power setting	IP (Notch)	9	-1	-1	-2	0	0	-2	-2	
Off time	OFF(Notch)	1	0	0	0	0	0	0	0	
Stabilizer A	SA (Notch)	3	0	0	0	0	0	0	-1	
Stabilizer B	SB (Notch)	10	+2	+2	-1	+2	+2	+3	+3	
Wire tension	WT (Notch)	8	0	0	0	-1	-1	-2	-3	
Voltage gap	VG (V)	39	0	+4	+4	0	+5	+5	+10	
Actual cutting speed	FA (%)	100	80	60	60	90	85	70	50	

*Wire breakage can be reduced by raising the SE notch from $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$.

Optimization of cutting condition (Example) In case of an EDM machine manufactured by Mitsubishi

●Center is concave))((→	①Raise 2nd cutting speed	(Lower 2nd SB by 1 to 4 notches) (Lower 2nd Vo by 1 to 2 notches) (Lower 2nd VG by 2 to 5 notches)
•Shape is concave and there is a difference in upper / lower dimensions		-	①Raise 2nd cutting speed②Raise wire feeding speed	(Same as above) (Raise WS by 2 to 4 notches)
• There is a difference in upper / lower dimensions			①Raise wire feeding speed②Increase approach amount to 1st to 2nd	(Raise WS by 2 to 4 notches) (Raise by 2 to 7 μ m)
Bullet shaped and there is a difference in upper / lower dimensions		\rightarrow	①Decrease approach amount to 1st to 2nd	(Raise by 2 to 10 μ m)
Center is swollen	()	-	①Lower 2nd cutting speed	(Lower 2nd VG by 2 to 5 notches) (Lower 2nd SB by 1 to 3 notches)

[Improvement of cutting precision] (For punch shape)

[When lines are formed on cutting surface]

[When short circuit occurs]	 ①Decrease approach amount between lp:4 and lp:3 by 1 t ②Raise VG of lp:4 by 1 to 5 notches ③Raise V₀ of lp:4 by 2 to 4 notches ④Perform the "Plus-One" cutting (see the following item) 	ο5 μm
[When FC=0 occurs]	 ①Lower VG of cutting condition where FC=0 occurs by 3 to ②Decrease the approach amount between 1st to 2nd by 5 	

* During thick plate (60 mm or more) cutting with the upper / lower nozzles separated, set the dielectric fluid flow rate for the 2nd and following cuts to 1.5 to 2.0 L. (to prevent short circuits and speed drop at IP:3 or less)

[Points for finish cutting (Point to check during cutting)]

Cutting speed falls compared with [1st] standard – cutting	When slow → · Raise Ip by 1 notch · Raise SB by 1 to 2 notches
Optimal [2nd] cutting speed is 1.5 to 2.3 times of FA	When slow → · Raise Vo by 1 to 2 notches · Lower SB by 1 to 4 notches
Optimal [3rd] cutting speed is 2.0 to 2.5 times of FA	When slow → · Raise Vo by 2 to 4 notches
lp:3 (Stable when cutting voltage V is VG +3 to +15 V)	· Lower VG by 2 to 5 notches
Optimal [4th] cutting speed is 2.0 to 2.5 times of FA	When slow → · Raise Vo by 2 to 4 notches
Ip:2 (Stable when cutting voltage V is VG +5 to +15 V)	· Lower VG by 2 to 5 notches

*When cutting speed is too high, take opposite measures to the above.

Hitachi Metals, Ltd.

Cable Materials Company

Hulic Asakusabashi Building, 22-16, Asakusabashi 1-chome, Taito-ku, Tokyo 111-0053, Japan Tel: +81-3-3863-2370

Hitachi Metals Europe GmbH

Head Office Immermannstrasse 14-16, 40210 Dusseldorf, Germany Tel: +49-211-16009-0

London Branch Office

Whitebrook Park, Lower Cookham Road, Maidenhead, Berkshire SL6 8YA, United Kingdom Tel: +44-1628-585534

South Germany Office, Munich Business Center Bavaria

Radlkoferstrasse 281737 Munich Germany Tel: +49-(0)89-741185-114

Milano Branch Office Via Modigliani 45, 20090 Segrate, Milano, Italy Tel: +39-02-7530188/7532613/7533782

Hitachi Metals America, Ltd.

Detroit Office

Pinnacle Office Center, 41800 West Eleven Mile Road, Suite 100, Novi, MI 48375, U.S.A. Tel: +1-248-465-6400

San Jose Office 1920 Zanker Road, San Jose, CA 95112, U.S.A. Tel: +1-408-467-8900

Hitachi Cable America Inc.

2 Manhattanville Road, Suite 301, Purchase, NY 10577, U.S.A. Tel: +1-914-694-9200

Hitachi Metals Singapore Pte. Ltd.

Head Office 12 Gul Avenue, Singapore 629656 Tel: +65-6861-7711

Jakarta Representative Office Menara BCA38th Floor JI. M.H. Thamrin No1, Jakarta 10310, Indonesia Tel: (62-21)2358-6060/61

Hanoi Representative Office Sun Red River Building., 5F 23 Phan Chu Trinh Street Hoan Kiem District, Hanoi, Vietnam

Tel: +84-4-3933-3123

Philippine Representative Office Unit 1006 Prime Land, Market ST., Madrigal Business Park, Avala Alahang Muntinlung City, Metro Mania, Philippines

Ayala Alabang, Muntinlupa City, Metro Manila, Philippines Tel: +63-2-808-8083/89

HCAS Thai Trading Co., Ltd.

388 Exchange Tower, Level20 Unit2004, Sukhumvit Rd, Kwaleng, Klongtoey, Khate Klongtoey, Bangkok 10110, Thailand Tel: +66-2260-6310

Hitachi Metals (India) Pvt. Ltd.

Plot No 94 & 95, Sector 8, IMT Manesar, Gurgaon-122050, Haryana, India Tel: +91-124-4812300 / 4812400 / 4124800

Hitachi Metals Hong Kong Ltd.

Suites 1809-13 18/F Tower 6 The Gateway, Harbour City Tsimshatsui Kowloon Hong Kong Tel: +852-2724-4183

Hitachi Metals Taiwan, Ltd. Taipei Branch

11F, No.9, Xiangyang Road, Zhongzheng District, Taipei City 10046, Taiwan Tel: +886-2-2311-2777

Hitachi Cable (China) Trading Co., Ltd.

Head Office & Sales Div. (Hitachi Metals (Shanghai) Ltd.) 11F, Chong Hing Finance Center, No. 288, NanJing Road (West), Shanghai, 200003, China Tel: +86-21-3366-3000

Guangzhou Office

Room1001, Goldlion Digital Network Center, 138 Tiyu Road East, Tianhe. Guangzhou 510620, China Tel: +86-20-3878-0319

Hitachi Cable Trading (Dalian F.T.Z.) Co., Ltd.

Room 1102, Yoma IFC, No.128 Jinma Road, Dalian Development Area, Dalian, China 116600 Tel: +86-411-8733-2112

http://www.hitachi-metals.co.jp/e/